#!/usr/bin/env python
"""
The CCCC module contains a number of classes for reading various cross section,
flux, geometry, and data files with specifications given by the Committee for
Computer Code Coordination. The following types of files can be read using
classes from this module: ISOTXS, DLAYXS, BRKOXS, RTFLUX, ATFLUX, RZFLUX, MATXS,
and SPECTR.
The ISOTXS reader was originally derived from Professor James Holloway's
open-source C++ classes from the University of Michigan and later expanded by
Nick Touran for work on his PhD thesis. DLAYXS was later added by Paul Romano.
RTFLUX was done by Elliott Biondo.
A description of several CCCC formats are available online for ISOTXS_, MATXS_,
RTFLUX_, and RZFLUX_. Other format specifications can be found in Los Alamos
Report LA-5324-MS_.
.. _ISOTXS: http://t2.lanl.gov/nis/codes/transx-hyper/isotxs.html
.. _MATXS: http://t2.lanl.gov/nis/codes/transx-hyper/matxs.html
.. _RTFLUX: http://t2.lanl.gov/nis/codes/transx-hyper/rtflux.html
.. _RZFLUX: http://t2.lanl.gov/nis/codes/transx-hyper/rzflux.html
.. _LA-5324-MS: http://www.osti.gov/bridge/servlets/purl/5369298-uIcX6p/
"""
from __future__ import division
from warnings import warn
import numpy as np
from pyne.utils import QA_warn
from pyne.binaryreader import _BinaryReader, _FortranRecord
QA_warn(__name__)
[docs]class Isotxs(_BinaryReader):
"""An Isotxs object represents a binary ISOTXS file written according to the
CCCC specifications.
:Attributes:
**chi** : list of floats
Fission yields by group.
**emax** : list of floats
Maximum energy bound for each group
**emin** : float
Minimum energy bound of set
**fc** : dict
Dictionary with file-control information
**fileVersion** : int
Version of the ISOTXS file.
**label** : str
File identification string
**nuclides** : list of _Nuclides
List of individual nuclides in the ISOTXS file.
**vel** : float
Mean neutron velocity in each group.
Parameters
----------
filename : str
Path of the ISOTXS file to load.
"""
def __init__(self, filename):
super(Isotxs, self).__init__(filename)
# Initialize attributes
self.fc = {} # file control info
self.nuclides = [] # : List of nuclides in ISOTXS file.
[docs] def read(self):
"""Read through and parse the ISOTXS file."""
self._read_file_ID()
self._read_file_control()
self._read_file_data()
# Read file-wide chi-distribution matrix if present. Note that if
# file-wide chi is given as a vector, it will be read during
# the read_file_data method.
if self.fc['ichidst'] > 1:
self._read_chi_data()
# Read nuclide data
for nucName in self.nucNames:
# Create nuclide object
nuc = _Nuclide(nucName)
# Read nuclide name and global data
self._read_nuclide_data(nuc)
# Read nuclide cross sections
self._read_nuclide_xs(nuc)
# Read nuclide chi data if present
if nuc.libParams['chiFlag'] > 1:
self._read_nuclide_chi(nuc)
# Read nuclide scattering matrix
for block in range(self.fc['nscmax']):
for subBlock in range(self.fc['nsblok']):
if nuc.libParams['ords'][block] > 0:
self._read_nuclide_scatter(nuc, block, subBlock)
# Add nuclide to dictionary
self.nuclides.append(nuc)
def _read_file_ID(self):
"""Reads the file identification block. This block is always present in
the ISOTXS format and contains a label and file version number.
"""
# Get first record from file
fileID = self.get_fortran_record()
# Read data from file identification record
self.label = fileID.get_string(24)[0]
self.fileVersion = fileID.get_int()[0]
def _read_file_control(self):
"""Reads the file control block. This block is always present and gives
many parameters for the file including number of energy groups, number
of isotopes, etc.
"""
# Get file control record
fc = self.get_fortran_record()
# Read data from file control record
self.fc['ngroup'] = fc.get_int()[0] # Number of energy groups in file
self.fc['niso'] = fc.get_int()[0] # Number of isotopes in file
# Maximum number of upscatter groups
self.fc['maxup'] = fc.get_int()[0]
# Maximum number of downscatter groups
self.fc['maxdown'] = fc.get_int()[0]
self.fc['maxord'] = fc.get_int()[0] # Maximum scattering order
self.fc['ichidst'] = fc.get_int()[0] # File-wide fission spectrum flag
# Max blocks of scatter data (seems to be actual number)
self.fc['nscmax'] = fc.get_int()[0]
self.fc['nsblok'] = fc.get_int()[0] # Number of subblocks
def _read_file_data(self):
"""Reads the file data block. This block is always present and contains
isotope names, global chi distribution, energy group structure, and
locations of each nuclide record.
"""
# Get file data record
fileData = self.get_fortran_record()
# Skip identification label of file
fileData.get_string(12*8)
# Read nuclide label for each nuclide
self.nucNames = fileData.get_string(8, self.fc['niso'])
self.nucNames = [name.strip() for name in self.nucNames]
# Read file-wide chi distribution vector
if self.fc['ichidst'] == 1:
self.chi = fileData.get_float(self.fc['ngroup'])
#: Mean neutron velocity in each group
self.vel = fileData.get_float(self.fc['ngroup'])
# Read maximum energy bound of each group
self.emax = fileData.get_float(self.fc['ngroup'])
# Read minimum energy bound of set
self.emin = fileData.get_float()[0]
# Read number of records to be skipped to read data for a given nuclide
self.locs = fileData.get_int(self.fc['niso'])
def _read_chi_data(self):
"""Reads file-wide chi-distribution matrix. In most cases, chi will be
given as a vector, not a matrix, and thus in such cases this routine is
not needed.
"""
raise NotImplementedError
def _read_nuclide_data(self, nuc):
"""Read the following individual nuclide XS record. Load data into nuc.
This record contains non-mg data like atomic mass, temperature, and some
flags.
"""
# Get nuclide data record
r = self.get_fortran_record()
# Read nuclide data
nuc.libParams['nuclide'] = r.get_string(
8)[0].strip() # absolute nuclide label
nuc.libParams['libName'] = r.get_string(
8)[0] # library name (ENDFV, etc. )
nuc.libParams['isoIdent'] = r.get_string(8)[0]
nuc.libParams['amass'] = r.get_float()[0] # gram atomic mass
# thermal energy yield/fission
nuc.libParams['efiss'] = r.get_float()[0]
# thermal energy yield/capture
nuc.libParams['ecapt'] = r.get_float()[0]
nuc.libParams['temp'] = r.get_float()[0] # nuclide temperature (K)
# potential scattering (b/atom)
nuc.libParams['sigPot'] = r.get_float()[0]
# density of nuclide (atom/b-cm)
nuc.libParams['adens'] = r.get_float()[0]
nuc.libParams['classif'] = r.get_int()[0] # nuclide classification
nuc.libParams['chiFlag'] = r.get_int()[0] # fission spectrum flag
nuc.libParams['fisFlag'] = r.get_int()[0] # (n,f) cross section flag
nuc.libParams['nalph'] = r.get_int()[0] # (n,alpha) cross section flag
nuc.libParams['np'] = r.get_int()[0] # (n,p) cross section flag
nuc.libParams['n2n'] = r.get_int()[0] # (n,2n) cross section flag
nuc.libParams['nd'] = r.get_int()[0] # (n,d) cross section flag
nuc.libParams['nt'] = r.get_int()[0] # (n,t) cross section flag
nuc.libParams['ltot'] = r.get_int()[0] # number of moments of total xs
# number of moments of transport xs
nuc.libParams['ltrn'] = r.get_int()[0]
# number of coord directions for transport xs
nuc.libParams['strpd'] = r.get_int()[0]
# Read scattering matrix type identifications for each scatter
# block. Could be total, inelastic, elastic, n2n
nuc.libParams['scatFlag'] = r.get_int(self.fc['nscmax'])
# Read number of scattering orders in each scatter block.
nuc.libParams['ords'] = r.get_int(self.fc['nscmax'])
# Read number of groups that scatter into group j, including
# self-scatter, in scatter block n.
nuc.libParams['jband'] = {}
for n in range(self.fc['nscmax']):
for j in range(self.fc['ngroup']):
nuc.libParams['jband'][j, n] = r.get_int()[0]
# Read position of in-group scattering cross section for group j,
# scattering block n, counted from first word of group j data
nuc.libParams['jj'] = {}
for n in range(self.fc['nscmax']):
for j in range(self.fc['ngroup']):
nuc.libParams['jj'][j, n] = r.get_int()[0]
def _read_nuclide_xs(self, nuc):
"""Reads principal microscopic multigroup cross-section data for a
single nuclide.
"""
# Get cross section record
r = self.get_fortran_record()
# PL-weighted transport cross section in group g for Legendre order l
for l in range(nuc.libParams['ltrn']):
for g in range(self.fc['ngroup']):
nuc.micros['transport', g, l] = r.get_float()[0]
# PL-weighted total cross section in group g for Legendre order l
for l in range(nuc.libParams['ltot']):
for g in range(self.fc['ngroup']):
nuc.micros['total', g, l] = r.get_float()[0]
# Microscopic (n,gamma) cross section in group g
for g in range(self.fc['ngroup']):
nuc.micros['n,g', g] = r.get_float()[0]
# Read fission data if present
if nuc.libParams['fisFlag'] > 0:
# Microscopic (n,fission) cross section in group g
for g in range(self.fc['ngroup']):
nuc.micros['fis', g] = r.get_float()[0]
# Total number of neutrons/fission in group g
for g in range(self.fc['ngroup']):
nuc.micros['nu', g] = r.get_float()[0]
# Read fission spectrum vector if present
if nuc.libParams['chiFlag'] == 1:
# Nuclide chi in group g
for g in range(self.fc['ngroup']):
nuc.micros['chi', g] = r.get_float()[0]
else:
if nuc.libParams['fisFlag'] > 0:
# Make sure file-wide chi exists
assert self.fc['ichidst'] == 1, "Fissile nuclide %s in library but no individual or global chi!" % nuc
# Set the chi to the file-wide chi distribution if this nuclide
# has a fission cross section
for g in range(self.fc['ngroup']):
nuc.micros['chi', g] = self.chi[g]
# Read some other important cross sections, if they exist
for xstype in ['nalph', 'np', 'n2n', 'nd', 'nt']:
if nuc.libParams[xstype]:
for g in range(self.fc['ngroup']):
nuc.micros[xstype, g] = r.get_float()[0]
# Read coordinate direction transport cross section (for various
# coordinate directions)
if nuc.libParams['strpd'] > 0:
for i in range(nuc.libParams['strpd']):
for g in range(self.fc['ngroup']):
nuc.micros['strpd', g, i] = r.get_float()[0]
def _read_nuclide_chi(self, nuc):
"""Reads nuclide-level fission spectrum matrix. In most cases, chi will
be given as a vector, not a matrix, and thus in such cases this routine
is not needed.
"""
raise NotImplementedError
def _read_nuclide_scatter(self, nuc, block, subBlock):
"""Read nuclide scattering matrix.
In some versions of the specification, the written description of the
scattering matrix is wrong! The person who was typing that version had
shifted their right hand one key to the right on the keyboard resulting
in gibberish. The CCCC-IV pdf has the correct specification.
"""
# Get record
r = self.get_fortran_record()
# Copy values for number of groups and number of subblocks
ng = self.fc['ngroup']
nsblok = self.fc['nsblok']
# Make sure blocks and subblocks are indexed starting from 1
m = subBlock + 1
n = block + 1
# Determine number of scattering orders in this block
lordn = nuc.libParams['ords'][block]
# This is basically how many scattering cross sections there are for
# this scatter type for this nuclide
jl = (m - 1)*((ng - 1)//nsblok + 1) + 1
jup = m*((ng - 1)//nsblok + 1)
ju = min(ng, jup)
# Figure out kmax for this sub-block.
kmax = 0
for j in range(jl, ju+1):
g = j - 1 # convert to groups starting at 0
kmax += nuc.libParams['jband'][g, block]
# scattering from group j
for order in range(lordn):
# for k in range(kmax):
for j in range(jl, ju+1):
# There are JBAND values for scattering into group j listed in
# order of the "from" group as from j+jup to j, from j+jup-1 to
# j, ...,from j to j, from j-1 to j, j-2 to j, ... , j-down to j
# anything listed to the left of j represents
# upscatter. anything to the right is downscatter. n,2n on
# MC**2-2 ISOTXS scatter matrix are reaction based and need to
# be multiplied by 2 to get the correct neutron balance.
g = j-1
assert g >= 0, "loading negative group in ISOTXS."
jup = nuc.libParams['jj'][g, block] - 1
jdown = nuc.libParams['jband'][g, block] - \
nuc.libParams['jj'][g, block]
fromgroups = list(range(j-jdown, j+jup+1))
fromgroups.reverse()
for k in fromgroups:
fromg = k-1
nuc.micros['scat', block, g, fromg, order] = r.get_float()[
0]
[docs] def find_nuclide(self, name):
"""Returns a nuclide with a given name.
Parameters
----------
name : str
Path of the ISOTXS file to load.
Returns
-------
nuc : Nuclide
Object containing microscopic cross sections and other data.
"""
for nuc in self:
if nuc.name == name:
return nuc
return None
def __iter__(self):
for nuc in self.nuclides:
yield nuc
def __repr__(self):
return "<ISOTXS File: {0}>".format(self.f.name)
[docs]class Dlayxs(_BinaryReader):
"""A Dlayxs object represents the data stored in a CCCC-format DLAYXS
file. This file contains delayed neutron precursor yields, emission spectra,
and decay constants reduced to multigroup form. Typically, the data in a
DLAYXS file would be related to cross-section files in ISOTXS and GRUPXS.
:Attributes:
**isotopes** : list of strs
Names of the isotopes in the DLAYXS file.
**isotopeFamily** : dict
Dictionary whose keys are the isotope names and whose values are
**decay** : dict
Dictionary whose keys are names of nuclides and whose values are decay
constants for each delayed neutron family.
**spectrum** : dict
**nGroups** : int
Number of energy groups
**nIsotopes** : int
Number of isotopes
**nFamilies** : int
Number of delayed neutron families
**nu** : dict
Parameters
----------
filename : str
Path of the DLAYXS file to load.
"""
def __init__(self, filename):
super(Dlayxs, self).__init__(filename)
self.isotopeFamily = {}
self.decay = {}
self.spectrum = {}
self.nu = {}
[docs] def read(self):
"""Read through and parse data in the DLAYXS file."""
self._read_file_ID()
self._read_file_control()
(decay, spectrum) = self._read_spectra()
self._read_yield()
for isotope in self.isotopes:
self.decay[isotope] = {}
self.spectrum[isotope] = {}
for gDelay in [1, 2, 3, 4, 5, 6]:
family = self.isotopeFamily[isotope][gDelay-1]
self.decay[isotope][gDelay] = decay[family]
self.spectrum[isotope][gDelay] = spectrum[family]
def _read_file_ID(self):
"""Read file ID block"""
id = self.get_fortran_record()
self.label = id.get_string(24)[0]
fileID = id.get_int()[0]
def _read_file_control(self):
"""Read file control block."""
fileControl = self.get_fortran_record()
self.nGroups = fileControl.get_int()[0]
self.nIsotopes = fileControl.get_int()[0]
self.nFamilies = fileControl.get_int()[0]
def _read_spectra(self):
"""Read the decay constants and delayed neutron spectra"""
fileData = self.get_fortran_record()
self.isotopes = fileData.get_string(8, self.nIsotopes)
# Read decay constants for each family. We will follow the convention
# of the CCCC files that the families are indexed starting from 1.
decay = {}
for family in range(1, self.nFamilies+1):
decay[family] = fileData.get_float()[0]
# Read the delayed neutron spectra for each family
spectra = {}
for family in range(1, self.nFamilies+1):
spectra[family] = fileData.get_float(self.nGroups)
# This reads the maximum E for each energy group in eV as well as the
# minimum energy bound of the set in eV.
self.energySpectra = fileData.get_float(self.nGroups)
self.minEnergy = fileData.get_float()[0]
# Determine the number of families to which fission each isotope
# contributes to delayed neutron precursors and the number of records
# to be skipped to read data for each isotope
## nFamilies = fileData.get_int(self.nIsotopes)
## nSkip = fileData.get_int(self.nIsotopes)
return decay, spectra
def _read_yield(self):
"""Read the delayed neutron precursor yields"""
for isotope in self.isotopes:
yieldData = self.get_fortran_record()
self.nu[isotope] = {}
for gDelay in [1, 2, 3, 4, 5, 6]:
self.nu[isotope][gDelay] = yieldData.get_float(self.nGroups)
self.isotopeFamily[isotope] = yieldData.get_int(6)
[docs]class Brkoxs(_BinaryReader):
"""A Brkoxs object represents data stored in a BRKOXS file from the CCCC
format specification. This file is given in conjunction with an ISOTXS (or
GRUPXS) file when the Bondarenko self-shielding method is to be used.
Parameters
----------
filename : str
Path of the BRKOXS file to read.
"""
def __init__(self, filename):
super(Brkoxs, self).__init__(filename)
[docs]class Rtflux(object):
"""An Rtflux object represents data stored in a RTFLUX file from the CCCC
format specification. This file contains regular (i.e. not adjoint) total
fluxes. Attribute names mirror those described in the CCCC specification,
found here:
http://t2.lanl.gov/nis/codes/transx-hyper/rtflux.html
Attributes:
-----------
hname: str
Name of file ("rtflux" or "atflux")
huse: str
User identification string
ivers: int
File version
ndim: int
Number of dimenstions
ngroup: int
Number of energy groups
ninti: int
Number of fine mesh intervals in the first dimension
nintj: int
Number of fine mesh intervals in the second dimension
nintk: int
Number of fine mesh intervals in the third dimension
iter: int
Outer interation number
effk: float
Effective multiplication (k)
nblok: int
Number of Fortran data blocks
flux: ndarray
Fluxes in the form flux(i, j) where i is interval and j is energy group
adjoint: bool
Specify if fluxes are adjoint (e.g. for an atflux file)
"""
def __init__(self, filename):
"""
Parameters
----------
filename : str
Path to the RTFLUX file to be read.
"""
b = _BinaryReader(filename)
fr = b.get_fortran_record()
# read file identification
self.hname = fr.get_string(8)[0].strip()
self.huse = fr.get_string(8)[0].strip()
self.ivers = fr.get_string(8)[0].strip()
mult = fr.get_int(1)
if self.hname == "rtflux":
self.adjoint = False
elif self.hname == "atflux":
self.adjoint = True
# read specifcations
fr = b.get_fortran_record()
self.ndim, self.ngroup, self.ninti, self.nintj, self.nintk, self.niter \
= fr.get_int(6)
self.effk = fr.get_float(1)[0]
if not self.adjoint:
self.power = fr.get_float(1)[0]
else:
fr.get_float(1)
self.nblok = fr.get_int(1)[0]
# read fluxes
flux = []
# This is the 1D binary spec, specified by CCCC.
# It does not work the the PyNE binary reader, but using the 3D format
# does work, as tested.
#
# if self.ndim == 1:
# for m in range(1, self.nblok + 1):
# fr = b.get_fortran_record()
# print fr.num_bytes
# jl = (m - 1)*((self.ngroup - 1)/self.nblok + 1) + 1
# jup = m*((self.ngroup -1)/self.nblok + 1)
# ju = min(self.ngroup, jup)
# flux += fr.get_double(int(self.ninti*(ju-jl+1)))
# 3D binary spec
for l in range(1, self.ngroup + 1):
for k in range(1, self.nintk + 1):
for m in range(1, self.nblok + 1):
fr = b.get_fortran_record()
jl = (m - 1)*((self.nintj - 1)/self.nblok + 1) + 1
jup = m*((self.nintj - 1)/self.nblok + 1)
ju = min(self.nintj, jup)
flux += fr.get_double(int(self.ninti*(ju-jl+1)))
flux2 = []
num_intervals = self.ninti*self.nintj*self.nintk
for i in range(self.ngroup):
if not self.adjoint:
flux2.insert(0, flux[i*num_intervals:(i+1)*num_intervals])
else:
flux2.append(flux[i*num_intervals:(i+1)*num_intervals])
flux2 = np.array(flux2)
flux2 = flux2.transpose()
self.flux = flux2
b.close()
[docs] def to_mesh(self, m, tag_name):
"""This member function tags supplied PyNE Mesh object with the fluxes
contained in the rtflux file.
Parameters
----------
m: PyNE Mesh
A PyNE Mesh object with same x, y, z intervals used to generate
the rtflux file.
tag_name: str
The tag name to use to tag the fluxes onto the mesh.
"""
from pyne.mesh import HAVE_PYMOAB
if HAVE_PYMOAB:
from pyne.mesh import Mesh, NativeMeshTag
else:
warn("The PyMOAB optional dependency could not be imported. "
"All aspects of the partisn module are not imported.",
ImportWarning)
if not m.structured:
raise ValueError("Only structured mesh is supported.")
mesh_dims = [len(x) - 1 for x in m.structured_coords]
if mesh_dims != [self.ninti, self.nintj, self.nintk]:
raise ValueError("Supplied mesh does not comform to rtflux bounds")
temp = m.structured_ordering
m.structured_ordering = 'zyx'
m.tag = NativeMeshTag(self.ngroup, float, name=tag_name)
m.tag[:] = self.flux
m.structured_ordering = temp
[docs]class Atflux(Rtflux):
"""An Atflux object represents data stored in a ATFLUX file from the CCCC
format specification. This file contains adjoint total fluxes. Note that
this is the same format as RTFLUX. See Rtflux class for a complete list of
atrributes. The RTFLUX/ATFLUX binary specification is found here:
http://t2.lanl.gov/nis/codes/transx-hyper/rtflux.html
"""
def __init__(self, filename):
"""
Parameters
----------
filename : str
Path to the ATFLUX file to be read.
"""
super(Atflux, self).__init__(filename)
[docs]class Rzflux(_BinaryReader):
"""A Rzflux object represents data stored in a RZFLUX file from the CCCC
format specification. This file contains volumetric averages of fluxes by
broad energy groups for different geometric zones.
Parameters
----------
filename : str
Path to the RZFLUX file to be read.
"""
def __init__(self, filename):
super(Rzflux, self).__init__(filename)
[docs]class Matxs(_BinaryReader):
"""A Matxs object represents data stored in a MATXS file. This file contains
generalized cross-sections.
Parameters
----------
filename : str
Path to the MATXS file to be read.
"""
def __init__(self, filename):
super(Matxs, self).__init__(filename)
[docs]class Spectr(_BinaryReader):
"""Reads ultra-fine group spectrum file from MC**2"""
def __init__(self, filename):
super(SPECTR, self).__init__(filename)
self.fc = {}
self.read1D()
self.flux = self.read2D()
def read1D(self):
t1 = self.get_fortran_record()
self.fc['eig'] = t1.get_float()[0]
self.fc['buck'] = t1.get_float()[0]
self.fc['emax'] = t1.get_float()[0]
self.fc['deltau'] = t1.get_float()[0]
self.fc['ngrp'] = t1.get_int()[0]
self.fc['mgcsd'] = t1.get_int()[0]
self.fc['ncsd'] = t1.get_int()[0]
def read2D(self):
t2 = self.get_fortran_record()
flux = []
for g in range(self.fc['ngrp']):
flux.append(t2.get_float()[0])
return flux
class _Nuclide(object):
"""Contains data about a single nuclide in an ISOTXS file. Originally,
Touran had his own Nuclide class so this one is provided to supply the basic
capabilities needed.
"""
def __init__(self, name):
self.name = name
self.libParams = {}
self.micros = {}
def __repr__(self):
return "<Nuclide: {0}>".format(self.name)
if __name__ == '__main__':
lib = Isotxs('ISOTXS')